Bers Embedding of the Teichmüller Space of a Once-punctured Torus

نویسندگان

  • YOHEI KOMORI
  • TOSHIYUKI SUGAWA
  • L. V. Ahlfors
چکیده

In this note, we present a method of computing monodromies of projective structures on a once-punctured torus. This leads to an algorithm numerically visualizing the shape of the Bers embedding of a one-dimensional Teichmüller space. As a by-product, the value of the accessory parameter of a four-times punctured sphere will be calculated in a numerical way as well as the generators of a Fuchsian group uniformizing it. Finally, we observe the relation between the Schwarzian differential equation and Heun’s differential equation in this special case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Limiting Shape of One-dimensional Teichmüller Spaces

We show that the Bers embedding of the Teichmüller space of a once-punctured torus converges to the cardioid in the sense of Carathéodory up to rotation when the base torus goes to the boundary of its moduli space.

متن کامل

Cusps in Complex Boundaries of One-dimensional Teichmüller Space

This paper gives a proof of the conjectural phenomena on the complex boundary one-dimensional slices: Every rational boundary point is cusp shaped. This paper treats this problem for Bers slices, the Earle slices, and the Maskit slice. In proving this, we also obtain the following result: Every Teichmüller modular transformation acting on a Bers slice can be extended as a quasi-conformal mappin...

متن کامل

Spirals in the Boundary of Slices of Quasi-fuchsian Space

We prove that the Bers and Maskit slices of the quasi-Fuchsian space of a once-punctured torus have a dense, uncountable set of points in their boundaries about which the boundary spirals infinitely.

متن کامل

Pleating Coordinates for the Teichmüller Space of a Punctured Torus

We construct new coordinates for the Teichmüller space Teich of a punctured torus into R x R+ . The coordinates depend on the representation of Teich as a space of marked Kleinian groups GM that depend holomorphically on a parameter p varying in a simply connected domain in C . They describe the geometry of the hyperbolic manifold H3/^ ; they reflect exactly the visual patterns one sees in the ...

متن کامل

Pleating invariants for punctured torus groups

In this paper we give a complete description of the space QF of quasifuchsian punctured torus groups in terms of what we call pleating invariants. These are natural invariants of the boundary ∂C of the convex core of the associated hyperbolic 3-manifold M and give coordinates for the non-Fuchsian groups QF −F . The pleating invariants of a component of ∂C consist of the projective class of its ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004